Singularities of Curves

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singularities of rational Bézier curves

We prove that if an nth degree rational Bézier curve has a singular point, then it belongs to the two (n− 1)th degree rational Bézier curves defined in the (n− 1)th step of the de Casteljau algorithm. Moreover, both curves are tangent at the singular point. A procedure to construct Bézier curves with singularities of any order is given.  2001 Elsevier Science B.V. All rights reserved.

متن کامل

Eecient Resolution of Singularities of Plane Curves

We give a new algorithm for resolving singularities of plane curves. The algorithm is polynomial time in the bit complexity model, does not require factorization, and works over Q or nite elds.

متن کامل

Efficient Resolution of Singularities of Plane Curves

We give a new algorithm for resolving singularities of plane curves. The algorithm is polynomial time in the bit complexity model, does not require factorization, and works over Q or finite fields.

متن کامل

Deformations of Singularities of Plane Curves

In this paper we present some new results in the deformation theory of plane curve singularities. The methods rely on the study of analytic properties of linear non homogeneous ODE’s.

متن کامل

Singularities of Integrable Systems and Algebraic Curves

We study the relationship between singularities of finite-dimensional integrable systems and singularities of the corresponding spectral curves. For the large class of integrable systems on matrix polynomials, which is a general framework for various multidimensional spinning tops, as well as Beauville systems, we prove that if the spectral curve is nodal, then all singularities on the correspo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nature

سال: 1904

ISSN: 0028-0836,1476-4687

DOI: 10.1038/071152a0